
Abstract. The biological activity of a polypeptide
strongly depends on its 3D structure. Ab initio predic-
tion of the native structure from the sequence of amino
acids has long motivated the development of an
optimum energy model such that interactions present
in the native conformation are stronger than those
present in nonnative conformations and of algorithms
capable of ®nding the basin of lowest free energy among
an astronomically large number of possible conforma-
tions. Despite recent progress in our understanding of
the factors responsible for both polypeptide stability and
formation, computer simulations of polypeptide models
are still far from being practical software tools for
biologists. In this work, state-of-the-art computer sim-
ulations aimed at ab initio structure prediction in
aqueous solution are reviewed and their strengths and
weaknesses are highlighted.
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1 Introduction

Predicting the 3D structure of a polypeptide is necessary
for understanding its biological utility, in inhibiting its
dysfunctions and in designing e�ective drugs. This is no
simple task for computer simulations. As a result of
the cooperative unfolding±folding (UF) mechanism, the
bioactive native structure, which is commonly at
the minimum free energy [1, 2], must be located among
a number of possible conformations much larger than
Avogadro's number. The second di�culty is to deter-
mine the minimum model that reproduces the essential
structural and energetic features of polypeptides and
allows an extensive search of conformational space. A
variety of methods including molecular dynamics (MD)
simulations, Monte-Carlo-based methods (MC), multi-
canonical MD and MC simulations and conformational
search strategies have been applied to protein models;

however, such calculations are still of limited structural
use for biologists without additional experimental data.
The factors responsible for both polypeptide formation
and stability are nevertheless now better understood and
computer e�ciency has increased by several orders of
magnitude. The goal of this review is to put ab initio
approaches into the context of experimental work and to
clarify a number of aspects that can bring theoretical
predictions closer to experiment.

2 Stability and formation: insights
from experimental data

Short peptides, fewer than 40 amino acids, have only
marginally stable conformations in solution. Peptide
a-helices and a-helical hairpins (two helices connected by
a turn) do not show 100% helix content in circular
dichroism (CD) measurements [3]. De novo designed
b-hairpins (two b-strands connected by a turn), b2a (two
antiparallel b-strands packed against a helix) and b3
(three antiparallel strands) peptides have been shown by
NMR spectroscopy to adopt the correct folded struc-
tures in equilibrium with unfolded structures [4±6].

The rate of formation of several secondary structural
elements of size and composition comparable with those
found in proteins has been investigated by nanosecond-
resolved kinetic methods. a-helices can form within
about 100 ns, turns within about 500 ns and b-hairpins
within about 1 ls [7]. No timescale for more complex
topologies such as b3 and bab motifs has been reported
as yet. The denaturation process of peptides has also
been investigated by CD and ¯uorescence spectroscopy.
The lack of strong cooperativity in the unfolding tran-
sition is common to all small peptides [3±6], but some
cooperativity is detected. As an example, Schenck
and Gellman [8] used a designed b3 peptide to study
antiparallel b-sheet formation.

Natural proteins are more stable than short peptides;
however, they are rarely stabilized by more than 5±
10 kcal/mol compared to their unfolded forms. Stability
results from a complex balance between entropy, which
favors unfolding, and enthalpic components, which
favor folding, including salt bridges [9, 10], hydrogen
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bonds, backbone±backbone interactions [11], disul®de
bonds [12], propensities of amino acids to form a-helices
and b-sheets [13, 14] and hydrophobic e�ects [9±15].
Other factors such as ion binding, pH and concentration
contribute as well [16]. Direct experimental information
on the magnitude of each of these various terms is not
yet available.

Proteins can fold to their average native states much
faster than previously thought (millisecond-to-second
range) [17]. Reduced cytochrome c has been found to
fold in 130 ls [18] and the helical k repressor protein in
only 20 ls [19]. Proteins exhibit a strong cooperative UF
transition and the UF process can be described by either
the two-state (denatured-native) model with a unique
transition state or a multiple-state model with an en-
semble of transition states having either weak or strong
similarity to the native state [20]. Thus, Zaidi et al. [21]
detected two pathways for unfolding the a=b protein
barstar. One unfolding intermediate has nativelike
secondary structure, the other has lost most of its
secondary structure. Similarly, Grantchavora et al. [22]
and Martinez et al. [23] found that the transition states
of two b-sheet proteins were polarized versions of the
native structure, i.e. nativelike in a speci®c region of the
protein and largely unstructured elsewhere.

3 O�-lattice versus lattice protein models

Ideally one would like to calculate exactly the density of
conformational states of a solvated polypeptide chain
in order to clarify the e�ects of parameters (e.g. the
temperature, the energy function) and of the amino acid
sequence on the thermodynamic and kinetic properties.
Such studies are feasible for highly simpli®ed models
with each amino acid represented by a bead. This is
possible for 2D and 3D models restricted to moves on a
regular lattice with a number of particles np < 27 and 15,
respectively, because all states can be enumerated [24,
25], and for models with np up to 50 by combining
sampling and histogram techniques [26]. (The interest in
using lattice models is to limit the discrete number of
conformational states.) Although such simulations with
simpli®ed chains have contributed to the design of
potential-energy functions (see later) and the emergence
of possible protein UF mechanisms [24±28], the lack of
explicit side chains is an obstacle to reproducing the
cooperative nature of the folding transition [29] and
experimental structures.

As a compromise between structural precision and
computational cost, two types of representations are
employed according to the length, N , of the polypeptide
chain. One type, used for proteins (N > 40), includes
coarse-grained models, restricted or not to moves on a
lattice, where each residue is represented by two beads: an
a-carbon [30] or united peptide group bead for the main
chain [31] and a bead for any side chain, with its van der
Waals radius and position derived from an analysis of side
chains in high-resolution protein structures. The solvent is
considered implicitly. Another type of model, used for
short peptides, comprises o�-lattice detailed models
where the main-chain atoms are treated explicitly and the

side-chain representation ranges from a bead [32±34] to
two beads [35, 36] or an all-atom representation (exclud-
ing nonpolar hydrogens) [37, 38]. The solvent is most of-
ten considered implicitly in such calculations.

All models do not lead to the same structural preci-
sion. Simple lattice models, based on cubic or face-cen-
tered cubic grids, generate low-resolution protein
structures with little a-helix content. Lattice models of
higher complexity, for instance with 56 or 90 orienta-
tions of the virtual a-carbon±a-carbon bonds, allow
resolutions of 1.0 AÊ [30]. O�-lattice models ®t protein
structures to an average of 1.6 AÊ when using an opti-
mized set of discrete main-chain conformations [39], but
can otherwise reproduce experimental structures exactly.

4 Analytic form of the potential

The design of a satisfactory potential is critical to
prediction. Such design requires that the lowest energy
structures deviate little from the experimental ones and
that these native structures are stable under physiolog-
ical conditions [1]. Based on MC simulations [40] and
analytic theory [41] with simple protein models, the
procedure for designing an optimum potential has been
clari®ed: maximize the quantity Z � EN ÿ EM=d, where
EN and EM are the average energies of the native and
misfolded (nonnative) states and d is the ¯uctuation
of the energy of the misfolded states. By de®nition,
misfolded states are taken to exclude states that
correspond to ¯uctuations around the native state. This
quantity was also found to promote fast folding of short
peptide sequences [42].

In practice, there are two factors which limit the de-
velopment of the analytic form of the energy function
and the set of parameters for detailed protein models.
One factor is related to uncertainties in the experimental
structure of folded polypeptides. This uncertainty is
much higher for short peptides than for proteins (Sect.
2). It is also important to recall that NMR-determined
structures are time and space averages and that both
polypeptides and proteins may contain ¯exible or dis-
ordered regions. The connection between these ther-
mally populated states and the function of proteins is
still not resolved in detail. Another limiting factor is the
generation of a representative sample of nonnative, low-
energy states with little structural resemblance to the
native state, given the size of the conformational space
to be sampled. This is no simple task since the misfolded
states themselves depend on the energy function.

Di�erent methods have been used to generate an
ensemble of nonnative states:

1. Threading the sequences into a library of possible
folds constructed from the structures in the protein
data bank [43±45].

2. MD simulations at 500 K for about 1 ns starting
from the native state [46, 47].

3. Search strategies with constraints on the native
secondary elements [39, 48].

4. MC simulations at 700 K starting from fully extended
structures [49].

5. Exhaustive searches with a restricted volume [50].
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Some of these methods fail to generate a represen-
tative ensemble of competing low-energy unfolded
forms. The threading method generally provides
noncompact high-energy forms, deviating substantially
from the observed ones. Methods 2 and 3 are not
guaranteed to cover an adequate ensemble of nonna-
tive states because of length restrictions (2), rigid-body
approximations (3) or sampling from a single starting
point (2 and 3). In contrast to these approaches which
generate a signi®cantly biased distribution of nonnative
states, methods (4) and (5) can provide a representative
ensemble of misfolded states, at least for short
peptides.

As a result of di�erences in the ensemble of
misfolded structures, the chain representation and the
treatment of solvent e�ects, there is no universal
analytic form for the potential [30±39, 44±57]. Rather,
current potentials include a variety of all-atom molec-
ular mechanics potentials combined with implicit
solvent models [37, 51±54], knowledge-based functions
(which derive all the parameters from a statistical
analysis of known protein structures) [44, 47, 55],
functions that combine knowledge-based terms and
other components related to hydrogen-bond (H-bond)
formation and side-chain positions [30±32] and, ®nally,
simple functional forms based on H-bond and hydro-
phobic interactions [35, 50].

All these potentials perform di�erently with respect
to the structure discrimination problem. Most potentials
work for low-resolution fold recognition but not for
high-resolution fold recognition or for ab initio folding,
because misfolded forms with energies lower than the
native form are often found in test cases [34, 39, 44, 45].
Their performances also di�er according to the proteins
studied [57]. Fold recognition involves the identi®cation
of the native form among a list of forms, while ab initio
folding involves locating the native form starting from
random conformations and thus is sensitive to the ab-
solute value of the energy. However, recent progress in
elaborating e�ective potentials has been achieved for a
small number of proteins [53] and short peptides
adopting elementary topologies in aqueous solution [49,
50]. Their performances remain to be evaluated on a
larger subset of models.

5 Strengths and weaknesses
of current computer simulations

Ab initio structure prediction. We have selected to
review methods which build a structure for the target
sequence without using speci®c template structures,
a priori location of secondary structure elements or
experimental distance restraints. The use of such infor-
mation is described in Refs. [58±61].

5.1 Classical MD simulations

MD simulations, which are based on the integration of
Newton's equations of motion, have a long history
for the study of structural and dynamic properties of

biomolecules in solution [62]. Their utility to simulate
reversible UF processes of very short duration (nano-
second timescale) has been demonstrated for various
b-peptides in methanol at room temperature [63].
Attempts to fold short peptides were also conducted in
water at high temperature (e.g. Ref. [64]); however, since
typical timescales covered by MD simulations (about
10 ns) are many orders of magnitude shorter than the
experimental folding times (see Sect. 2), folding a small
protein with an all-atom model in explicit solvent was
not feasible until recently at room temperature.

E�cient MD simulations on 256 parallel processors
(CRAY T3D) have recently opened new perspectives.
Duan and Kollman [65] have presented a 1 ls trajectory
for the villin headpiece subdomain, a 36-residue peptide
consisting of three short helices held together by a loop,
a turn and a hydrophobic core. Starting from a partly
unfolded state (the turn region was in its native posi-
tion), they found structures deviating by 5.0 AÊ root
mean square from the NMR structure with 50% of the
side-chain contacts detected by NMR. (The root mean
square deviation between corresponding a-carbons is
a commonly used measure of similarity between two
structures). Although much longer computer runs are
necessary for this small protein to reach its native state,
several simulations still need to be carried out starting
from unbiased conformations so as to have a clear
picture of the dynamics and the average structure on
the microsecond timescale.

5.2 MC-based methods

In many cases, it is more convenient to solve a set of
coupled equations of motion by reducing it to a
corresponding random process which can itself be
simulated. This is the essence of the MC method. The
Metropolis MC method, based on the idea of impor-
tance sampling and originally developed to simulate
the equilibrium properties of ¯uids, is not e�cient for
structure prediction of detailed polypeptide models
because the probability of visiting energy barriers (much
greater than kT ) is very small. The Metropolis criterion
accepts a trial con®guration if its energy is lower than
the previous starting conformation (DE < 0) or with a
probability exp(ÿDE=kT ) if the energy increases [66].

In order to enhance the Metropolis acceptance ratio,
i.e. the ratio of the number of accepted con®gurations to
the total number of generated ones, several MC-based
methods have been developed. They can be classi®ed
into (1) the methods that are not guaranteed to generate
a Boltzmann-distributed (canonical) ensemble of con-
formations at temperature T and (2) those which are by
bound the canonical ensemble generation requirement.
(The multicanonical MC approach is described in the
next section).

1. As a ®rst step towards enhanced sampling of
conformational space, Li and Scheraga [67] developed
the MC-minimization (MCM) method. The trial con-
®guration, generated by random changes of one residue
at a time, is minimized before application of the Met-
ropolis criterion. This technique has been useful in
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locating the lowest-energy regions of the ®ve-residue
metenkephalin, but scales exponentially with the number
of dihedral angles.

In order to accelerate the search e�ciency, several
variants of the MCM method have been proposed. They
di�er in the choice of the simulation temperature, Tm,
and in the way of generating the trial con®guration.
Choices include guided moves from the reorientations of
the permanent dipoles in the local ®eld generated by the
system [68], probability-biased moves from experimen-
tally derived dihedral angle distributions for each residue
and changes of one or several residues at a time [37, 38].
Such MCM methods, in which Tm is momentarily in-
creased if a given number of steps has been rejected,
have been shown to be useful in predicting helices [37,
68], b-hairpins [37, 38] and a b2a motif [37] with 10±23
residues; however, their applicability to longer all-atom
peptide fragments is still unclear. A number of authors
have preferred to combine their MCM methods and
other techniques. As an example, a combination of the
MCM method and a potential-smoothing approach has
been tested on the 10±55 fragment of staphylococcal
protein A and on apo calbindin D9K using a two bead
per residue representation. The concept behind the po-
tential-smoothing approach is to reduce the ruggedness
of the energy landscape. Nativelike structures and their
mirror images were found. Given the simplicity of the
chain representation, it is unfortunate that other
proteins of similar chain lengths with more complex
topologies than the three-helix and four-helix bundles
have not been studied [31].

Recently, another variant of the MCM method,
based on a kinetic requirement and di�usion-process-
controlled moves, has been proposed [32, 49]. The idea in
this case, is to search for trial conformations that are
thermodynamically and kinetically accessible from the
current conformation in a reasonable time. Applications
of the combined use of this technique and the Optimized
Potential for E�cient peptide-structure Prediction
(OPEP) potential to 24 polypeptides with 7±38 residues
have been reported. Using on average six beads per res-
idue and starting from fully extended con®gurations, all
OPEP-MC runs generate nativelike structures indepen-
dently of the complexity of the fold (e.g. helices, b-hair-
pins and b3, b2a, a-helical hairpin motifs) [49]. This
approach is also found to predict the three-helix bundle
structure of the 10±55 fragment of staphylococcal pro-
tein A and is currently being applied to small proteins.

Other MC-based approaches, without energy mini-
mization, have also been described and tested. Pedersen
and Moult [52] have explored the combination of the
MC method and genetic algorithms for all-atom protein
fragments up to 14 residues long. The idea of the genetic
algorithm is to give better chances of survival and re-
production to the good individuals (i.e. the low-energy
structures) within a population. Again, accurate struc-
tural prediction has been presented for most peptides
studied.

In order to go beyond such a chain length, alternative
approaches have been used. Simulated annealing, based
on a MC procedure with Tm gradually decreasing during
the simulation, has been applied to several peptides

of increasing complexity (e.g. b-sheet [69] and a=b [34]
structures). Although this method is often used, con-
vergence to the global minimum is problematic because
of its extreme sensitivity to the cooling procedure.

An alternative hierarchical MC approach developed
by Srinivasan and Rose [35] is based on the idea that
secondary structures form early in the folding process
and subsequently self-assemble to form tertiary struc-
tures. This algorithm uses on average six beads per res-
idue and generates trial conformations by perturbing
three consecutive residues using four possible structures:
a-helix, b-strand, turn and coil. It imposes hierarchy
by constraining the conformational regions that form in
the earliest steps of folding to persist throughout the
simulation. Excellent results have been achieved for six
proteins in terms of secondary and supersecondary
structures, but the algorithm has failed in one case. At-
tempts to predict other protein structures have not been
reported. This approach can be assumed to be limited by
the fact that the sequential folding mechanism is known
to be valid only for certain proteins.

Another hierarchical MC approach starts with a
coarse lattice model and ends with a ®ner lattice model,
using two beads per residue [30]. Applications to three
proteins with 46±120 residues show accurate predictions
for both three-helix and four-helix bundles, but inaccu-
rate results for a 46-residue a=b structure [30] and for
larger proteins with more complex folds [70].

2. A limited number of MC-based approaches are
aimed at ®nding the global energy minimum while
directly generating a canonical ensemble for detailed
polypeptide models.

The so-called window MC algorithm changes the
conformation by local jumps in a randomly chosen
window involving a few residues of the polypeptide
chain. Outside the window, the chain is ®xed and the
e�ect of these constraints on jumps within the window is
taken into account. If this e�ect is neglected, the con-
®gurations will not be generated with the correct limiting
distribution [33]. This method has been applied to a
26-residue peptide designed to adopt a helix±turn±helix
conformation. The turn region is modeled by ®ve glycine
residues and the a-helical parts are modeled by alanine
residues. Starting from b-strand or loop structures, four
simulations ®nd nativelike conformations, but two end
in misfolded conformations (e.g. long helices). Since the
impact of glycine residues on the search e�ciency was
not discussed, the real performance of this method re-
mains to be evaluated for natural sequences and realistic
potential-energy functions.

Another possibility involves the MC growth method
which generates a Boltzmann ensemble of chains. In this
method, the chains are grown atom by atom and are
replicated or deleted according to Boltzmann statistics.
The growth process can easily be modi®ed to include ex-
perimentally derived dihedral angle distributions for each
residue. This method has only been used to study either
short peptides which have a strong preference for helical
conformations or small loops in immunoglobulins [71].

Finally, the combination of the rigid element algo-
rithm and the Metropolis MC procedure has been tested
on short model peptides [54]. The algorithm keeps the
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amide CONH elements rigid and rotates one or two
amide elements at a time. The energy function has the
property of lowering energy barriers. Two important
questions are whether this procedure, which allows
folding of helix and b-hairpin models at 274 K, works
for more complex motifs and whether its energy function
is not so smoothed that it could destabilize the native
folded structure.

5.3 Multicanonical MC and MD simulations

The advantage of multicanonical MC orMD simulations
is that any energy barrier can be crossed, while the
canonical distribution at any temperature can be calcu-
lated from the multicanonical ensemble using reweight-
ing techniques. As a result, the lowest-energy state will
be detected and any thermodynamic property or any
observable, such as the 3JHNa spin±spin coupling con-
stants of amide and a protons, can be checked against
experimental data. The price which must be paid involves
running multiple simulations until the energy histogram
becomes ¯at. The reader is referred to Refs. [51, 72, 73]
for algorithmic details and the applications of multica-
nonical MC and MD simulations to various all-atom
peptides of limited chain lengths (fewer than 15 residues)
in aqueous solution. Excellent agreement between pre-
diction and experiment has been found concerning the
thermodynamics of helix±coil transitions [72], the stabil-
ity of two short peptides known experimentally to adopt
an a-helix and a b-hairpin [51] and the position of one
region of an antibody heavy chain [73]. It remains to
be determined whether these simulations can be applied
to peptides with 20±40 amino acids, especially with an
accurate implicit solvent model [51]. Such studies would
provide very useful insights into the thermodynamics
underlying the most elementary tertiary motifs.

5.4 Conformational search strategies

While early work in this ®eld coupled build-up proce-
dures and energy minimization, recent work uses
constraint-based conformational searching. In the
build-up procedure, starting conformations are con-
structed by combining minima of conformational build-
ing blocks (e.g. tripeptides). This strategy has performed
rather well on the 36-residue avian pancreatic polypep-
tide, but is not guaranteed to ®nd the global minimum.
Furthermore, the number of starting conformations is
still exponential in the number of building blocks [74]. In
the constraint-based Geocore method, the polypeptide is
grown residue by residue allowing four /,w choices
for every residue and all conformations with a near-
maximum number of nonpolar contacts are constructed
[50]. As an example, 3� 108 conformations are calcu-
lated for a 17-residue peptide model. Although, this
method ®nds nativelike conformations for 15 di�erent
peptides containing 17±30 residues using an extremely
simple energy function, there is evidence that a larger set
of /,w choices improves the quality of the prediction and
other constraints limiting the conformational search will
need to be used in studies of longer chain lengths [50].

6 Future directions

This summary of the strengths and limitations of current
computer simulations aimed at ab initio structure pre-
diction for single-chain polypeptides in aqueous solution
shows that while many methods work for a few amino
acid sequences, promises of reliable structural predic-
tions have not yet materialized for a wider variety of
sequences adopting both simple and complex topologies.

These methods share the use of an energy function
which attempts to model the various energetic compo-
nents contributing to both polypeptide stability and
speci®city. It is well established that the key factor for
structure prediction is thermodynamics (existence of a
stability gap between the native and misfolded forms).
While energy errors are unavoidable [75], current re-
search is devoted to the development of energy functions
including energetic subtleties that specify well-de®ned
structures at a detailed level. Certainly, many factors are
likely to a�ect the stability gap and the details of native
structures. Factors include multibody interactions, po-
sition-dependent e�ects on amino acid structural pro-
pensities [76, 77], side-chain±side-chain interactions [78]
and the balance between backbone and long-range side,
chain terms [11, 79, 80]. However, it also remains to be
determined whether our inability to make native forms
more stable than misfolded forms results from the chain
representation, the energy function or a combination of
both factors.

In order to address this issue, it is necessary to study
small monomeric proteins with 20±40 residues which
fold to simple topologies (without disul®de bonds, ion
binding, metal ligation and nonnatural amino acids)
and, furthermore, which exhibit a cooperative two-state
UF transition, which is the hallmark of larger proteins.
Such a study requires combined e�ort in three ®elds:

1. Protein engineering. There is a need for de novo
sequences designed to adopt stable elementary top-
ologies such as ab2, a2b, a3, bab, aba, ba2, b2a, b3 motifs.
The b3 fold has already been designed, but is only 80%
folded at low temperature [5]. Determination of the
stabilization free energy as a function of point mutations
is also desirable. An essential aspect of this library of
sequences is that all 20 amino acids must have a high
probability of occurrence.

2. Multidimensional NMR studies. Structural char-
acterization of the unfolded forms in equilibrium with
the folded forms is a major problem. Unfolded forms are
never described because the sequence-speci®c assignment
of resonances, other than the backbone 15N and 13C(O)
signals, is di�cult; however, these less structured forms
are essential for checking the theoretical energy lands-
cape.

3. Molecular modeling. For relatively small proteins,
extensive sampling of conformational space is tractable
on fast computers and determination of the chain rep-
resentations and energy functions allowing discrimina-
tion of the native forms with their correct Boltzmann
weights should be feasible.
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